TPF Briefing to the ORIGINS Subcommittee Dan Coulter Chas Beichman June 7, 2002 # Agenda - TPF Status Overview - Architecture Concept Selection - StarLight Status - Pre-Formulation Planning #### **TPF Status- Overview** #### • Pre-Formulation Architecture Studies - Received final reports, integrated models and technology roadmaps from all four study teams - Architectures for further study and development have been selected - Visible coronagraph and nulling IR interferometer (connected and separated spacecraft - Project Briefed HQ - Contracts have been extended to complete comprehensive study report - Draft Report in Review - Study Teams will be dissolved at the end of the contracts ### • Re-planning - In the process of consolidating the Starlight effort with TPF - The Starlight team primary focus will be to provide a ground demonstration of the technology required for the formation flying interferometer version of TPF - Formalizing coordination with ESA's DARWIN Mission - Draft LOA in review at State Department ### TPF Status- Overview (Cont.) ### Technology - Continuing to work on TPF Technology Plan including the Starlight activities - Plan due end of this FY - Several major Starlight technology milestones achieved - Mid-IR nulling testbeds in operation at JPL (in collaboration with Keck) - Advanced Cryocooler Technology Development Program is underway - Four teams are on contract and kickoff meetings have been held - High Dynamic Range Imaging Testbed coming together at JPL - Second major technology development procurement is in preparation for 2m class coronagraph mirror demonstrator - Industry led system level TPF technology procurement and university/small business targeted TPF R&D procurement planned for later this year with funding in early FY2003 #### Science - Completed, published and briefed HQ on Bio-Marker Studies - Exo-Planet NRA selections made and contracts in place - Released TPF related addition to ROSS NRA call - Current SWG to be dissolved shortly; - Dear Colleague Letter will be sent out by HQ (7/1) for new Science Team₄ #### TPF Architecture Selection Process ### Architecture Selection Criteria #### Science capability - Detect radiation from earth-like planets in the habitable zone - Characterize orbital & physical properties - Characterize atmospheres & search for bio-markers - Provide broader understanding of all planetary system constituents (giant planets, debris disks, etc.) - Provide advanced capability for astrophysics at minimal extra cost #### • Technological maturity - Understanding of the technology challenges - Degree of difficulty with respect to the current state of the art and anticipated technology inheritance from prior missions (eg, NGST, SIRTF, SIM) - Likelihood of meeting technology development goals by 2005 for the available budget #### • Programmatic - Relative cost and risk - Relevance to future observatories providing ultra-high spatial resolution capability ## Key Science Requirements - Sky coverage: 60% - Mission duration: 5 years - Science program: - Primary objective is planet detection and characterization - Secondary general astrophysics - Planet Finding/Characterization: - Nominal planet is defined as solid body with Earth radius at 1 AU, T=270 K. Assume exo-zodiacal dust will be 1-10x the solar system level. - Number of stars (F5-K5) surveyed for planets (R=3, SNR=5): 150 - Astrophysics: - Carry out program of high resolution imaging at minimal extra cost to the mission (reduced in scope relative to initial Architecture Study SOW) ## The Appearance of Distant Earths - TPF-SWG (Des Marais et al.), Wolstencroft & Raven (2000) and NAI team (Meadows) have addressed appearance of Earths - Both mid-IR and near-IR/visible contain important diagnostics # Architectures Evaluated in Phase 1 Study | Architecture Families | # | Architecture Families | # | |---|---|---|----| | Lockheed Martin | | Ball | | | Free Flying Interferometers | 4 | Coronagraphs: including Spergel-Kasdin Pupil, Masking, Phase Mask | 7 | | Fizeau Interferometer | 1 | Occulting Screens | 2 | | Connected Interferometers | 3 | Nulling Interferometers | 10 | | Tethered Interferometers | 1 | Hypertelescope | 2 | | Coronagraphs | 1 | | | | TRW | | Boeing-SVS | | | Large Aperture Coronagraph | 3 | Coronagraphs | 7 | | Fresnel Coronagraph w/free flying elements | 1 | Hypertelescope: including Snapshot
Imaging Array, Linear Array | 3 | | 100 m sparse aperture | 1 | Interferometers: Separated Spacecraft, & Connected Structure | 3 | | Free Flying Occulter | 1 | Laser Trapped Mirror | 1 | | Interferometers: Connected and Separated Spacecraft | 8 | | | # Architectures Evaluated in Phase 2 Study Variable Pupil Visible Coronagraph (Ball) Apodized Square Aperture (Boeing-SVS) Structurally Connected IR Interferometer (LMMS) Separated Spacecraft IR Interferometer (Book) Large Aperture IR Coronagraph (TRW) Non-Redundant Linear Array Hypertelescope (Boeing-SVS)₁₀ ### Candidate Architecture Characteristics | | Aperture/
Baseline | WFE /Optical
Path Error | Precision
Deployment | Other | |--|--|--|---|---| | Ball Spergel Visible Coronag raph | 4x10m elliptical
monolith;
300 PM actuators;
apod ized pupil | -1 -5nm rms manuf.;
-1n m rms corrected;
0.3Å rms stability; | Telescop e
structure | Telescop e
rotates in L2 or
drift-away
orbit | | Boeing-SVS ASA Visible Coronag raph | 8x8m square
segmented;
TBD PM
actuators;
apod ized pupil | -3 -6nm rms manuf.;
-1n m corrected;
few Å rms stability; | Telescop e
structure and
primary mirror | Assembly in orbit- then to L2 | | TRW IR
Coronag raph | 28m diameter
segmented; 13
PM actuators
per segment | 500nm rms manuf.;
-30n m rms corrected
-1 µm rms stability | Telescop e
structure and
primary mirror | L2 orbit;
T=21K | | LMMS Structurally Connected IR Interferometer | 9,21,40 m
baselines;
2x0.6m, 4x1.7m,
4x3.5m co llectors
respectively | <100 nm rms WFE;
7.2nm,10.6n m,10.6n m
Optical path error
(for 9,21,40 m
respectively) | Truss for 21 & 40m versions | Baseline
rotates; L2
orbit; T=60K,
40K, 40K (for
9,21,40 m
respectively) | | "Book Concept" Separated S/C IRInterferometer | 4x3.5m collectors; 1km baseline | <100 nm rms WFE;
3nm OPE | none | FF Baseline
rotates; L2
orbit; T=40K | | Boeing-SVS IR
Non-Redundant
Linear Array | 7x3m collectors;
100m baseline; | λ/200 rms WFE
(40nm@ 8μm);
72nm OPE | 100m truss | Baseline
rotates; LEO
assembly in
orbit then to
L2; T=100K | Dan Coulter Chas Beichman # The Challenge of Angular Resolution - Coronagraphs at $>3\lambda/D$ - Interferometers at $> 1 \lambda/B$ Radius of Habitable Zone (mas) ## Detect and Characterize Earth at 10 pc | Architecture | Time to Detect Earth Twin (SNR=5) | Time to Detect
Planet's
Atmosphere | Time to Detect Oxygen or Ozone | |--|---------------------------------------|---|---| | Apodized Square
Aperture (ASA) | 6.3 hr (incl. 2 rotations) | 1 d (H ₂ O)
R=20,SNR=5 | 3.8 d (O ₃)
R=20,SNR=5 | | Non-Redundant Linear
Array (NRLA) | 2.5 hr (one half rotation) | 2.7 d (CO ₂)
R=10,SNR=5 | 2.1 d (O ₃)
R=20,SNR=5 | | BASD Coronagraph | 0.86 hr (incl. 2 rotations) | 0.14 d (H ₂ O)
R=24,SNR=5 | 0.8 d (O ₂)
R=70,SNR=5 | | BASD Shaped Pupil | 5.3 hr (incl. 9 rotations) | 0.09 d (H ₂ O)
R=24,SNR=5
<10 pc | 0.7 d (O ₂)
R=70,SNR=5
<10 pc | | LMSS Structurally Connected Interferometer (40m) | 2 hr (but min 6hr
1 full rotation) | 0.8 d (H ₂ O, O
R=20, SN | | | Separated Spacecraft Interferometer (Book) 2 hr (but min 6hr 1 full rotation) | | 0.6 d (H ₂ O, C)
R=20, SN | 2 3 | ### Time To Survey 150 Stars (1 Epoch) # Exo-Zodiacal Emission Affects Both Visible and IR # Conclusions & Recommendations from the TPF-SWG - Both the IR and the visible regions of the spectrum offer critical information on planets, their atmospheres and bio-markers and both should be pursued. Technology, not science will likely be the driver to determine which will be pursued first. - Differentiating between the architecture alternatives will require - scientific insight to refine planet detection requirements - understanding of the real-world limitations of each architecture - support of technology development for both until a clear choice between them is quantitatively apparent - Two classes of architectures are recommended for further study and technology development. - Visible light coronagraphs/apodized aperture systems - IR nulling interferometer systems- both separated spacecraft & structurally connected versions - Reduced scale systems (relative to the full TPF) should also be studied further - Such systems (both architectures) are likely possible in the nearer-term - Project should evaluate benefits in cost, schedule and technology risk reduction against reduced science capabilities # Conclusions and Recommendations of TPF Technology Review Panel - TPF has two primary system architecture alternatives which should be pursued. The nature of the risk is different for the two. - IR nulling interferometers - Biggest technical risk is system complexity - e.g., multi-level control, cryogenic operation, - Individual components and subsystems are less challenging than the system - Draws heavily on SIM, SIRTF and NGST - "Super large" (≥40m) structurally connected systems are a major risk and are not recommended for further consideration - However, ≤25m structures for a near term reduced scale system are largely an engineering challenge, not a technology challenge - Visible coronagraphs. - Biggest technical risks are developing components/subsystems meeting requirements - e.g., mirror manufacturing and ≤Å level WFE stability is extremely challenging - System level operation is less challenging than the development and manufacture of the individual components/subsystems - Direct imaging, functionally simple ### JPL Architecture Selection Decision - Study and develop technology for: - visible coronagraphs/apodized aperture systems - up to 8-10m aperture systems to do the full TPF science - smaller aperture systems as potential nearer term missions - IR nulling interferometer systems - separated spacecraft version to do the full TPF science - shorter baseline structurally connected IR interferometers as potential nearer term missions - Evaluate reduced scale missions - determine cost, schedule and technology risk reduction - determine capability to address TPF science questions # Steps to Visible Light TPF - Near term, direct visible imaging with coronagraphs - Simple coronagraphs in near IR with NGST for closest stars and for hot, young Jupiters in 5 μm window - Advanced coronagraph/apodized 1-2 apertures in visible (MIDEX, Discovery) - \rightarrow 4 m ("TPF-Lite" offramp) - \rightarrow 8~10 m apertures (TPF) - Properties of Giant Planets - $-Radius^{2}*albedo(\lambda)*\Phi(t)$ - -Atmospheric composition - –Rotation → surface/atmospheric variability - Detection of nearest earths - Workshop to address ground/space trade - -What could 30-50-100(!) m telescope do? ### Steps to a Mid-IR TPF - A precursor mid-IR nulling interferometer with two 0.6 m telescopes on a 10 m boom could detect hot, young Jupiters out to > 50 pc - A larger precursor with 1-2 m mirrors on a 20 m boom could detect Jupiters within 25 pc and Earths within 8 pc - Properties of Giant Planets - Radius and temperature - Atmospheric composition - Orbital properties, radius and temperature of nearest Earths - Extension of available technology - "TPF-Lite" Offramp =SIM- pico+ cryo ## StarLight Status- Overview - New Guidelines - StarLight received direction from NASA Code S on 3/1/02 to: - Cease flight aspects of development - Focus on ground demonstration of technologies that support the formationflying interferometer concept for TPF - Redirection of FY02 Activities: - FY02 Replan complete - Workforce transition nearly complete technologists retained, flight engineers successfully transitioned to other projects - Ball contract revised consistent with new charter - Flight design archive nearly complete - Technology Milestones proceeding well - Formation Interferometer Testbed (fringe tracking) - Metrology technologies - AFF Prototype (Autonomous Formation Flying Sensor) - Formation Flying algorithm development and simulation - Draft technology implementation plan for FY03-FY05 ### Fringe Tracking Demonstrated in FIT - White light fringes tracking demonstrated 2/27/2002 - Instrument visibility 45% (matches the predicted value) - All control loops operating - Loops tracked for 20 min until deliberately broken (reqt was 10 sec) ### FIT Closed Loop Control – Moving Collector PI M-850 Hexapod - StarLight and Metrology Loops closed - Collector moved through representative spacecraft motions - Loops remain locked at 1/3 pixel (1 arcsec) stability - Further improvement to 1/5 pixel required for final fringe tracking milestone Stellar Beam Angle at CCD Due to Collector Coarse Stage Motion Stellar Beam Angle Error at CCD ### StarLight Planning - New StarLight charter: - Deliver by September 2005 a ground demonstration of formationflying interferometry technologies to influence the TPF architecture decision - Ground demonstration of system technologies will include: - A set of testbeds and system engineering - Targeted component technology development - Parallel development of interferometer point designs for TPF - StarLight will: - Submit a preliminary plan for peer review in June 2002 - Write a joint task plan with TPF and submit a final plan for FY03-FY05 - Hold a FY02 year-end technology presentation of what's been accomplished - Merge with, and become a supporting task to, TPF on October 1 2002 under a single UPN. ### TPF Pre-Formulation Plans - Over the period FY2002-FY2005, TPF will perform a series of activities focused on selection a final architecture no later than FY2006 to support a new start in FY2007 - The Project will pursue science, technology and system studies associated with the two selected architectures - Science: \$4M-\$5M/year of competed R&A and fellowships for TPF foundation science - Technology: in-house efforts where JPL has special expertise; major competed outside system efforts; university/small business R&D - System studies: in house development of a range of point designs - NASA will coordinate with ESA with the goal of achieving consensus on the best architecture for a joint planet finding mission ### Recommendations on Technology Development Approach- Per Technology Review Panel - Recommend comprehensive set of laboratory breadboards and testbeds to validate system designs and models and to reveal unknowns - Two-beam system level interferometer to demonstrate planet detectability and predictability from an end-to-end basis. - Large-scale formation-flying testbed, e.g., a flat-floor facility to simulate much of formation flying technology - Large coronagraph optical optical train to demonstrate Å-level WF quality and passive stability, mirror producibility and model validity. - Parallel development of integrated models. - Coordination with Precursor Science and Technology Missions - "Eclipse"..or alternate concept....coronagraphy - SIM....structural stability, in-space structurally connected interferometry, - NGST, SIRTF...cryogenic mirrors, mechanisms, structures, sunshades - Keck, LBTI, et al....science and physical phenomena - Technology flight demonstrations only if laboratory testbeds cannot conclusively resolve uncertainties ### Prioritized TPF Technology Development Plan Content Chas Beichman June 7, 2002 | | Visible | IR | Interfer om | eters | |-------------------------------------|--------------|------|---------------|---------------------------| | Technology | Coronagraphs | Core | Separated S/C | Structurally
Connected | | Nulling | | 1 | | | | Cryocoo ler | | 1 | | | | Cryogen ic Opto-
Mechanics | | 2 | | | | High Contrast Imaging | 1 | | | | | Wavefront Sensing & Control | 1 | 3 | | | | Large Optics | 1 | 3 | | | | Formation Flying | | - | 1 | | | Precision Deploy able
Structures | 3 | | • | 3 | | Low Thrust Propulsion | 2 | 1 | | | | Metrology | 2 | 2 | | | | System/Sub system
Testbed s | 1 | 1 | | | | Integrated Modeling | 2 | 2 | | | ### System Level Technology - Planned testbeds and breadboards - Interferometers - Cryogenic IR nulling and beam train breadboards - IR interferometer system testbed - Metrology - Structure - Cryocoolers - Separated spacecraft interferometer testbed (FIT+) - Formation flying testbeds - Formation control - Formation sensing - SPHERES - Coronagraphs - High contrast imaging testbed - High actuator density deformable mirror breadboards - Large visible optics - Visible coronagraph system testbed Planned out-of-house Planned at JPL #### TPF Schedule #### Conclusion - Visible coronagraphs and IR nulling interferometers have been selected as candidate architectures for further study and development - The TPF Project will pursue science, technology and system studies associated with these architectures - Science: significant competed outside R&A for TPF foundation science - Technology: in-house efforts where JPL has special expertise; major competed outside efforts - System studies: in house development of a range of point designs - Annual reviews of science, technology, and point design progress will be held to judge readiness for selection of TPF architecture - TPF will coordinate with the ESA DARWIN Study - Science Team participation - Technical Interchange Meetings - Management team coordination meetings - Pre-formulation products - Jointly agreed upon architecture decision - Formulation phase technology development strategy - Formulation phase Letter of Agreement # **Backup Charts** # Major Strengths & Weaknesses: Visible Coronagraphs | | Strengths | Weaknesses | |---|--|--| | B | ALL | BALL | | • | High Q*≈1; Less affected by zodiacal background | • 4x10m monolithic lightweight primary mirror required | | • | Direct imaging; functionally simple; 'Rapid' single mode data collection Ambient temperature | Extraordinary wavefront accuracy needed Sub-Å WF quality for multi-hour durations | | • | Testable | Requires high contrast starlight suppression | | • | Large visible telescope capability for | Not extendable to future ultra-high resolution | | | ancillary astrophysics | observatories | | • | BOEING-SVS | BOEING-SVS | | • | Less demanding wavefront accuracy | • Q<1 implies stringent stability requirements | | | needed (at expense of Q) | Requires high contrast starlight suppression | | • | Direct imaging; functionally simple; | • 8x8m square lightweight deployable | | | 'Rapid' single mode data collection | segmented primary mirror | | • | Ambient temperature | Passive sub-Å WF quality for multi-hour | | • | Testable | durations | | • | Large visible telescope capability for ancillary astrophysics | Not extendable to future ultra-high resolution observatories | ^{*}The parameter 'Q' is the ratio of planet flux (light) in the pixel to the background flux in the pixel. It is a measure of signal detectability. Low Q (<<1) implies greater stability requirements to keep scattered/diffracted background stable to required background rejection. Wavefront stability during integration $\sim \sigma/Q$, 30 nm/10⁴ \sim 3 picometer # Major Strengths & Weaknesses: IR Coronagraph | Strengths | Weaknesses | |---|---| | TRW Concept Relaxed PM and other optical tolerances relative to visible systems Direct imaging, functionally simple Classical coronagraph architecture, functionally well understood NGST linkage Large IR telescope capability for ancillary astrophysics | TRW Concept Q<<1 implies stringent stability requirements on telescope Poor resolution (λ/D 20X that of visible systems) 28m Segmented cryogenic primary mirror Complicated deployment Post-deployment mechanical stability concerns 21K operating temperature Poor overall testability Not easily extendable to future ultra-high resolution observatories | ^{*}The parameter 'Q' is the ratio of planet flux (light) in the pixel to the background flux in the pixel. It is a measure of signal detectability. Low Q (<<1) implies greater stability requirements to keep scattered/diffracted background stable to required background rejection. Wavefront stability during integration $\sim \sigma/Q$, 30 nm/10⁴ \sim 3 picometer # Major Strengths & Weaknesses: IR Interferometers (Structurally Connected) | Strengths | Weaknesses | |---|---| | Modest size 1.7m collector telescopes 3.5m optics for 40m version Use SIRTF or NGST technology for lightweight optics Exploits existing and continuing technology SIM, Palomar, Keck, MMT, LBTI, SIRTF, NGST Minimal component-level concerns Structurally connected design simplifies line of sight rotation mechanics relative to separated s/c version | LMMS Reduced science capability ≥40m version required for TPF planet finding Fixed baseline Eliminates capability to tune the baseline to maximize contrast ratio and/or spectral throughput 40K operating temperature Testing and verification complexity System and operational complexity Not extendable to future ultra-high resolution observatories | # Major Strengths & Weaknesses: IR Interferometers (Separated S/C) | | Strengths | | Weaknesses | |-------------------------|---|----|---| | "Bo | ok" Concept | "I | Book" Concept | | • N • r • R • a • N • N | Maximized science capability - Provides very high resolution imaging capability Variable baseline can optimize contrast atio and/or spectral throughput Reconfigurable, highly resilient architecture Modest size (3.5m) collector telescopes - Use SIRTF or NGST technology for lightweight optics Minimal component-level concerns Exploits existing and continuing echnology | • | Requires precision formation flying - including line of sight rotation - Requires precision spacecraft-to spacecraft metrology and communications 40K operating temperature Weight and volume may require additional launches Testing and verification complexity System and operational complexity | | • E | SIM, Palomar, Keck, MMT, LBTI, SIRTF, NGST Extendable to future ultra-high esolution observatories | | | ## Major Strengths & Weaknesses: Hyper-Telescope | Strengths | Weaknesses | |--|--| | Boeing-SVS Concept | Boeing-SVS Concept | | Much less sensitive to exo-zodiacal light than Bracewell interferometry (Q≈1) Densified pupil eliminates "fixed baseline problem" of Bracewell-type interferometers Imaging capability directly applicable for high resolution astrophysics Precursor to future ultra-high resolution observatories | Complex optical design, not as mature as the other options and all issues may not have been identified Long (100m) connecting structure Multiple launches required (3 estimated) In-space assembly either by astronauts or robotics Transfer to operational orbit Tight beam alignment tolerances and/or controls Testing and verification complexity System complexity |